

TINY TECH BIG IMPACT

MICROROBOTICS PIONEERING NEW FRONTIERS IN ENDODONTICS

Problem?

Improper and inadequate disinfection is one of the major causes of root canal failures.

Current Technologies Mechanically-Files

Chemically- Irrigating agents

Lasers-PIPS, SWEEPS

Solution

MICROROBOTICS utilizes microscopic robotic devices to improve the precision and effectiveness of RCT, which are actuated by extrinsically powered magnetic fields.

Features	Reconfigurability		
	Remote-control & Physical Intelligence		
	Untethered		
	Adaptability		
	Multi-functionality - Biofilm disruption, targeted drug delivery, microorganism retrieval for analysis		

Types of Microrobots Intrinsically Ions Powered Chemicals Acoustic Extrinsically Electric Optical Magnetic Field

Advantages & Disadvantages Precision Targeting Access to narrow and curved canals Real-time feedback Minimally invasive Advantages & Disadvantages Lack of controlled directionality OR speed of self-propulsion Expensive

Application

Steep learning curve

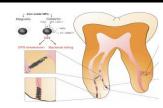
Automated navigation

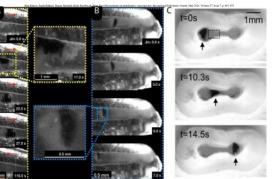
Microrobots are used to optimize root canal disinfection by the 'kill-degrade-and-remove' approach.

3D-Moulded robots

IONPs embedded in biocompatible hydrogel MOA: Generation of ROS

Time series images showing 3D- moulded robots propelling inside the root

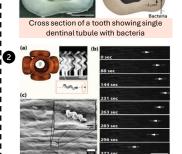


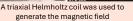

References

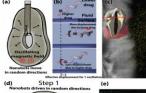
- Alaa Babeer, Sarah Bukhari, Rayan Alrehaili, Bekir Karabucak, Hyun Koo Microrobotics in endodontics- A perspective. International Endodontic Journal. May 2024. Volume 57, Issue 7-p. 861-871
- Debayan Dasgupta, Shanmukh Peddi, Deepak Kumar Saini, Ambarish Ghosh Mobile Nanobots for Prevention of Root Canal Treatment Failure. Advanced Healthcare Materials. April 2022. Volume 11 Issue 14. 2200235.

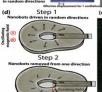
Aggregated Microswarms

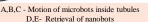
MOA: Use IONPs as building blocks that possess an inherent catalytic activity.

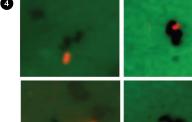


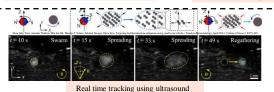

Time-lapse showing A) Biofilm disruption B) Sample retrieval C)


Navigation through isthmus space


Helical Silica Nanorobots


These silica helices contain a silica blob head with pure iron deposited at its core to facilitate their tetherless control.





The dead bacteria(red) acts as a heat source when subjected to magnetic hyperthermia

Technology	NaOCl flushing	Ultrasoud agitation	Laser- PIPS	Laser- SWEEPS	Magnetic nanobots reported here
Depth of Penetration	<20 µm	160-330 µm	800 μm	650-800 μm	2000 μm