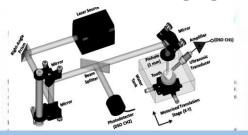


EXPLORING BIOPHOTONICS IN DENTISTRY

Photonics applications remain advantageous compared to conventional techniques in that they are non-contact and nondestructive and allow for multiple nanometre-scale measurements of over large areas.


Optical coherence tomographyDetection of microleakage of restorations

Quantum dots

semiconductor nanocrystals with unique optoelectronic properties; when stimulated and excited, they release energy via single photons.

Photoacoustic Imaging

Detect carious lesions in the early stages

Photoelasticity

Photothermal Imaging

To determine the biomechanics and stress distributions of various implant designs

Moiré interferometry studies deformation of materials.

Heating

LASERS

- •CO₂ (10.6 m) Soft tissue ablation
- •Nd:YAG (1.064 m) Root canal therapy, caries removal
- •Er,Cr:YSGG(2.78 m) Bone ablation, caries removal
- Argon (572 nm) Polymerization of restorative resin materials
- •Diode (810-980 nm) Promotion of healing of lesions or

