Seroprevalence of Transfusion transmitted infections in healthy blood donors attending a tertiary care hospital in Southern Rajasthan

Dr Nikita Sanadhya, 2nd Year PG Resident, Department of Transfusion Medicine, RNT Medical college, Udaipur (Raj)

Introduction Ensuring blood safety is crucial in transfusion medicine, as transfusion-transmitted infections (TTIs) pose significant risks and represent a major public health concern.^[1] An individual can transmit an infection during the asymptomatic phase, making transfusions a potential source of increased infection within the population. Unsafe blood transfusions carry significant consequences for both the recipient and society as a whole. Therefore, screening for transfusiontransmitted infections (TTIs) is vital to ensure the safety of blood transfusions and safeguard human lives.[2] Blood transfusion is a life-saying procedure, but it may lead to both immediate and delayed complications. Blood donors play a crucial role as the foundation of a safe supply of blood and its components. [3] Blood transfusion complications can range from mild to lifethreatening, making thorough pre-transfusion testing and screening for transfusion-transmissible infections essential. [4] Transfusion-transmissible infections pose a significant threat to blood safety, requiring blood transfusion services to ensure a safe, sufficient, accessible, and efficient blood supply at all levels. These infections often lead to prolonged viremia, as well as carrier or latent states, and are associated with severe, chronic, and life-threatening conditions. Key TTIs include human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), and syphilis. Notably, 12.5% of patients who undergo blood transfusions are at risk of developing post-transfusion hepatitis.^[5] To minimize the risk of transfusiontransmissible infections (TTIs), it is crucial to carefully select donors, ensuring that blood is sourced only from individuals unlikely to carry infectious agents. Evaluating TTIs is essential for assessing the safety of the blood supply and monitoring the effectiveness of existing screening procedures. [6] Study aims to determining the seroprevalence of TTI among healthy blood donors in a tertiary care hospital

Methodology

A cross-sectional was conducted at our institution where data were analyzed over a period of 1 year from January 2022 to December 2022. Blood was collected from apparently healthy individuals after detail history and examination, aged 18–60 years with weight >45 kg with hemoglobin concentration >12.5 gm%. All blood donors' samples were screened for HIV, hepatitis B surface antigen (HBsAg), HCV, and syphilis. Blood bank donor cards were used as a source of information. HIV, HBsAg, HCV tests were done by enzyme-linked immunosorbent assay (ELISA) procedure using the third generation kits. Syphilis was diagnosed by performing the venereal disease research laboratory (VDRL) test. Malaria testing was done by slide method using Leishman's staining. Blood donors were selected if they fulfilled all the criteria to be eligible for donation as described by the standard operating procedure of our blood bank.

Blood sampling

Venous blood was collected in plain vacutainer tubes which was allowed to clot naturally at room temperature. The clotted blood sample in plain vacutainer tubes was then spun in a centrifuge machine at 2500 rpm for 5 min to separate the serum which was further used for serological analysis. Hemoglobin determination was done by the traditional CuSO4 method. Tests on donor blood were carried out according to manufacturer's instructions with positive and negative controls. Before drawing the blood, each donor was requested to fill blood donor's card. Blood samples were tested, and reactive sera were confirmed by repeat testing using another kit manufactured by the different company. Confidentiality of reports was maintained as per standard guidelines.

Human immunodeficiency virus serology

Microlisa HIV (J. Mitra and Co., Pvt., Ltd.,) kits were used for detection of antibodies to HIV-1 (including subgroups O and C) and HIV-2. The Microlisa test is an enzyme immunoassay based on indirect ELISA.

Hepatitis B surface antigen serology

Microscreen HBsAg ELISA test kits (Span Diagnostic Ltd.,) were used for detection of HBsAg. The test is based on solid phase microplate direct ELISA (Sandwich ELISA) technique.

Hepatitis c virus serology

SD HCV ELISA 3.0 (SD Bio-standard diagnostic Pvt., Ltd.,) kits were used which is indirect sandwich ELISA for the qualitative detection of antibodies against HCV. It contains a microplate, which is precoated with recombinant HCV antigens (Core, NS3, NS4, and NS5) on the well. The amount of conjugate bound and hence color, in the wells, is directly related to the concentration of antibody in the sample.

Syphilis serolog

Syphilis was diagnosed using Accucare[™] rapid plasma reagin (RPR) syphilis screening test (Lab-care Diagnostic Pvt., Ltd.,). The RPR syphilis screening test is macroscopic nontreponemal flocculation card test for detection and to quantify reagin, an antibody-like substrate present in serum or plasma and spinal fluid from syphilitic persons.

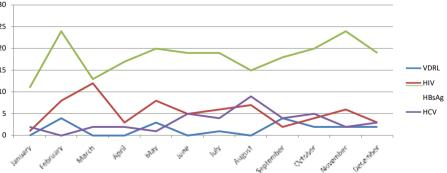
Quality control

Internal and external quality controls were carried out.

Statistical analysis

After data collection, data entry was done in Excel. Data analysis was done with the help of SPSS 27. Qualitative data were analyzed with the help of frequency and percentage table. The association among various study parameters was assessed with the help of Chi-square test. P < 0.05 consider as statistically significant.

Result


Figure 1: Total blood collection month-wise

The study included a total of 25,184 healthy donors, out of which 23,055 (91.79%) were voluntary donors and the remaining were family donors. Sudden surge in the number of family donors in the month of November and December might be due to increased dengue cases after rainy season escalated RDP demand.

Out of 25,184 donors, 65 donors (0.26%) were HIV-positive, 219 donors (0.87%) were HbsAg positive, and 39 donors (0.15%) were HCV positive while VDRL reactivity was seen in 18 donors (0.07%). The overall prevalence of HIV, HBsAg, HIV, and syphilis was 0.26%, 0.87%, 0.15%, and 0.07% respectively which was found to be statistically significant (P < 0.001). No blood donor tested showed positivity for malaria parasite. The number of blood donors was highest in the month of April and lowest in month of February.

Month	Reactive donors	VDRL	HIV	HBsAg	HCV	
January	14	0	1	11	2	
February	36	4	8	24	0	
March	27	0	12	13	2	
April	22	0	3	17	2	
May	32	3	8	20	1	
June	29	0	5	19	5	
July	30	1	6	19	4	
August	31	0	7	15	9	
September	28	4	2	18	4	
October	31	2	4	20	5	
November	34	2	6	24	2	
December	27	2	3	19	3	
TOTAL	2/1	19/0.07%)	65(0.26%)	210(0.97%)	20/0.15%)	

Table 1: Incidence of symbilis HRSAG HIV HCV & Malaria in blood donors

Sero-conversion of VDRL was high in February and September month, HIV was highest in

igure 2: Seasonal trend in the sero-

revalence of HIV, HBsAg, HCV

month, HIV was highest in March, HBsAg in February and November, HCV in August month.

Table 2: Comparison of transfusion transmitted infections prevalence rate with other studies

Studies	HIV %	HBsAg %	HCV %	VDRL
Srikrishna et al. (1999), Bangalore, India	0.44	1.86	1.02	1.6
Matee et al. (2006), Tanzania	3.8	8.8	1.5	4.7
Pahuja et al. (2007), Delhi, India	0.56	2.23	0.66	-
Bhattacharya et al. (2007), West Bengal, India	0.28	1.46	0.31	0.72
Fiekumo et al. (2009), Nigeria	3.1	18.6	6	1.1
Adhikari et al. (2010), Sikkim, India	0.32	0.78	0.27	0.27
Arora et al. (2010), Southern Haryana, India	0.3	1.2	1	0.9
Pallaviet al. (2011), Mysore, India	0.44	1.27	0.23	0.28
Chandekar SA et al (2012), Mumbai, India	0.26	1.3	0.25	0.28
Anjali et al. (2012), Kerala, India	0.6	1.5	0.4	0.1
Present Study, Udaipur, Rajasthan, India	0.26	0.87	0.15	0.07

Discussion

Conclusion & Recommendation

References

1.Buseri FI, Muhibi MA, Jeremiah ZA. Sero-epidemiology of transfusion-transmissible infectious diseases among blood donors in Osogbo, South-West Nigeria. Blood Transfus 2009;7:293-9.

2.Nagalo MB, Sanou M, Bisseye C, Kaboré MI, Nebie YK, Kienou K, et al. Seroprevalence of human immunodeficiency virus, hepatitis B and C viruses and syphilis among blood donors in Koudougou (Burkina Faso) in 2009. Blood Transfus 2011;9:419-24.

3.Anjali H, Issac A, Anjali MR, Anish TS. Transfusion-transmissible infections among voluntary blood donors at Government Medical College Thiruyananthapuram. Kerala, India, Asian J Transfus Sci 2012:6:55-6.

4.Pallavi P, Ganesh CK, Jayashree K, Manjunath GV. Seroprevalence and trends in transfusion transmitted infections among blood donors in a University Hospital blood bank: A 5 year study. Indian J Hematol Blood Transfus 2011;27:1-6.

5.Tessema B, Yismaw G, Kassu A, Amsalu A, Mulu A, Emmrich F, et al. Seroprevalence of HIV, HBV, HCV and syphilis infections among blood donors at Gondar University Teaching Hospital, Northwest Ethiopia: Declining trends over a period of five years. BMC Infect Dis 2010;10:111.

6.Jeremiah ZA, Koate B, Buseri F, Emelike F. Prevalence of antibodies to hepatitis C virus in apparently healthy Port Harcourt blood donors and association with blood groups and other risk indicators. Blood Transfus 2008;6:150-5.

7.Matee MI, Magesa PM, Lyamuya EF. Seroprevalence of human immunodeficiency virus, hepatitis B and C viruses and syphilis infections among blood donors at the Muhimbili National Hospital in Dar es Salaam. Tanzania. BMC Public Health 2006:6:21.

8.Adhikari L, Bhatta D, Tsering DC, Sharma DK, Pal R, Gupta A. Infectious disease markers in blood donors at Central Referral Hospital, Gangtok, Sikkim. Asian J Transfus

Sci 2010;4:41-2.
9.Pahuja S. Sharma M. Baitha B. Jain M. Prevalence and trends of markers of hepatitis C virus, hepatitis B virus and human immunodeficiency virus in Delhi blood

donors: A hospital based study. Jpn J Infect Dis 2007;60:389-91.
10. Arora D, Arora B, Khetarpal A. Seroprevalence of HIV, HBV, HCV and syphilis in blood donors in Southern Haryana. Indian J Pathol Microbiol 2010;53:308-9.

11.Bhattacharya P, Chandra PK, Datta S, Banerjee A, Chakraborty S, Rajendran K, et al. Significant increase in HBV, HCV, HIV and syphilis infections among blood donors

in West Bengal, Eastern India 2004-2005: Exploratory screening reveals high frequency of occult HBV infection. World J Gastroenterol 2007;13:3730-3.

12. Srikrishna A. Sitalakshmi S. Damodar P. How safe are our safe donors? Indian J Pathol Microbiol 1999;42:411-6.

12. Srikrishna A, Sitalakshmi S, Damodar P. How safe are our safe donors? Indian J Pathol Microbiol 1999;42:411-6.
13.Stokx J, Gillet P, De Weggheleire A, Casas EC, Maendaenda R, Beulane AJ, et al. Seroprevalence of transfusion-transmissible infections and evaluation of the

pre-donation screening performance at the Provincial Hospital of Tete, Mozambique. BMC Infect Dis 2011;11:141.

14.Tafuri S, Prato R, Martinelli D, Melpignano L, De Palma M, Quarto M, et al. Prevalence of hepatitis B, C, HIV and syphilis markers among refugees in Bari, Italy. BMC Infect Dis 2010:10:213.

15.Gupta R, Singh B, Singh DK, Chugh M. Prevalence and trends of transfusion transmitted infections in a regional blood transfusion centre. Asian J Transfus Sci 2011-5-177-8

16. Gupta N, Kumar V, Kaur A. Seroprevalence of HIV, HBV, HCV and syphilis in voluntary blood donors. Indian J Med Sci 2004;58:255-7.

Unique Registration ID: eP094